

Subjece :

Maths

Ye@r:

6

Unifi : Number and Place Value

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include etymology if useful.	Learning	$\underset{\substack{\text { Teaching } \\ \text { Telling }}}{\text { den }}$	Assessment	Learning	Teaching	Assessment	Learning	$\underset{\text { Feaching }}{\text { Facitating }}$	Assessment
\geq greater than or equal to \leq less than or equal to Roman numerals integer, positive, negative above/below zero, negative numbers formula - a mathematical rule written using symbols, usually as an equation describing a certain relationship between quantities. Divisibility - can be divided evenly without leaving a remainder. factorise - the reverse of expanding brackets. prime factor - a prime number that divides exactly into another given number. ascending/descending order digit total - the sum of all the digits in a number, e.g. the digit total of 364 is $3+6+4=13$	- Pupils know the value of each digit in a number up to 10000000 - Know why it is helpful to round numbers, e.g. when estimating calculations or when working with very large numbers such as populations. - Know where to put commas or separators when writing numbers greater than 10000 - Pupils will know the inequality symbols < and > Stem Sentences One million is one thousand thousands. The \qquad represents \qquad The value of the \qquad is \qquad \boldsymbol{a} is between \qquad and \qquad . The previous multiple of one million is \qquad . The next multiple of one million is \qquad a is nearest to \qquad			- Pupils understand the importance of the placeholder in numbers - Pupils understand which place value column to look at when rounding numbers - Pupils understand which two numbers a given number lies between when rounding. - Pupils understand the convention of rounding up if numbers are exactly halfway - Pupils understand where negative numbers are used in real life contexts			- Can use negative numbers in context and calculate intervals across zero - Can read, write, compare and order numbers up to 10000000 - Can round any number to a required degree of accuracy		

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
etymology if useful.	Remembering	Telling	Testing	Practising	Coaching	Observing	Reflecting	Facilitating	Evaluating
	\boldsymbol{a} is \qquad when rounded to the nearest million.								

Onton Wistow Prinn@ry School - curriculun Plan

Subject : Maths

Year: $5 / 6$
Unifi :AddMron and Svbiaction

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
etymology if useful.	Remembering	Telling	Testing	Practising	Coaching	Observing	Reflecting	Facilitating	Evaluating
Addition Add, more, and, make, sum, total, altogether Double Near double Half, halve One more, two more... ten more Addends - the numbers added together to make the sum Subtraction	- Pupils will know how to use place value to line up numbers with more than 4 digits accurately - Pupils will know when an exchange is and isn't needed - Pupils know how to round numbers in order to estimate - Pupils know the most appropriate number to round to, e.g. the nearest 10,100 or 1000			- Pupils understand ' 0 ' as a place holder			- Use manipulatives and pictorial representations to demonstrate how to add and subtract - Add and subtract increasingly larger numbers mentally - Use formal written methods to add and subtract numbers greater than 4-digits - Use rounding to estimate and check answers		

\%	Orion Wistiow Primary School = Curiculum Plan			\%
Subje	maxtes	Year: 6	Unfi : Muwpillicil	DWwslon

$?$									
Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning	Teaching	Assessment	Learning	Teaching	Assessment	Learning \quad Teaching Assessment		
etymology if useful.	Remembering	Telling	Testing	Practising	Coaching	Observing	Pupils can solve problems involving square and cubed numbes. Pupils can use known facts from one calculation to determine the answer to another similar calculation, $\text { e.g. } 5,138 \div 14=367$ use this to to calculate 367×15		
Multiplier - The number by which the multiplicand is multiplied by Product - The result of a multiplication Multiplication: Division Dividing Divide Divided by Divided into Grouping Sharing Shared equally Left over Remainder Equal groups of Dividend - The amount that you want to divide up. Divisor - The number we divide by. Quotient - The answer after we divide one number by another. dividend \div divisor $=$ quotient.	"If I multiply one factor by a number, I must divide the other factor by the same number for the product to stay the same." "If I multiply one factor by a number, and keep the other factor the same, I must multiply the product by the same number." "If one factor is made ten times the size, the product will be en times the size."			according to place value, supports division of larger numbers. - Pupils understand how using factor pairs can support dividing, e.g. $780 \div 20=780 \div 10 \div 2$ - Pupils understand each step in the 'long division' process - Pupils understand how to change a remainder into a fraction or a decimal. - Pupils understand how to interpret the remainder, e.g. $380 \div 12=31$ r8 could mean 31 full packs or 32 packs needed, depending on the context. - Pupils understand how to break numbers down to their prime factors. - Pupils understand how the order of operations affects the answer.			- Pupils can solve problems involving square and cubed numbes. - Pupils can use known facts from one calculation to determine the answer to another similar calculation, $\text { e.g. } 5,138 \div 14=367$ use this to to calculate 367×15		

\square
Subject : Maths
\square
Year: ©

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include etymology if useful.	Learning	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
	Remembering	Telling	Testing				Reflecting Facilitating Evaluating		
Term to term rule Variable Unknown Expression Equation Formula One-step equation Two-step equation Substitution Pairs of unknown enumerates	- Pupils know that forming algebraic expressions uses letters to represent numbers. - Pupils know the convention that, for example, " 3 t " means 3 multiplied by t; as multiplication can represent repeated addition, this is also a simpler way of writing \dagger $+\dagger+t$.			- Pupils understand the meanings of the terms "input", "output", "function" and "rule". - Pupils understandwhy it is important that they follow the order of the functions; for example, the output of $\times 5$ then + 3 will be different from +3 then \times 5. - Pupils understand that phrases such as " 2 more than a number" can be written more simply as, for example, " $x+2$ " or " $y+2$ ". - Pupils understand that the same expression can have different values depending on what number is substituted into it. - Pupils understand the difference between a formula and an expression, noticing that an expression does not have the equals sign, but a formula does. - Pupils understand that an expression, such as $2 x+6$, changes value depending on the value of x, whereas in an equation, such as $2 x+6=14$, x has a specific value. - Pupils understand that using inverse operations helps to solve equations.			- Pupils can find the input from a given output, using inverse operations. - Pupils can find numbers where the input is given and they need to find the output, using a mix of any of the four operations. - Pupils can find a rule. - Pupils can solve problems where the input and output are given, but one of the two functions is missing. - Pupils canfind values of expressions by substituting numbers in place of the letters. - Pupils can substitute numbers into abstract algebraic expressions such as $3 a+1$. - Pupils can use substitution to work out pairs of possible values. For example, if $x+y=9$, they find the values of y for different values of x. - Pupils can work systematically to find all the possible integer values.		

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
etymology if useful.	Remembering	Telling	Testing	Practising	Coaching	Observing	Reflecting	Facilitating	Evaluating
				- Pupils understand that equations with two unknown values can have several possible solutions.					

Onton Wisiow Primary school - Cumiculum Plan

6

Subject: Maftemafics

Year: 6
Unifi : Decimals

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
etymology if useful.	Remembering	Telling	Testing	Practising	Coaching	Observing	Reflecting	Facilitating	Evaluating
tenths hundredths thousandths decimal decimal fraction decimal point decimal place decimal equivalent	- Pupils know what the decimal point means. - Pupils know how many tenths, hundredths and thousandths are in a number. - Pupils know that when multiplying and dividing decimal numbers by multiples of 10, the decimal point does not move. - Pupils know that numbers such as 2.4 and 2.40 are the same.			- Pupils understand the relationship between ones, tenths, hundredths and thousandths, e.g. 3 tenths is the same as 30 hundredths. - Pupils understand the importance of zero as a place holder when calculating with decimal numbers. - Pupils understand how finding an equivalent fraction where the denominator is 10,100 or 1000 makes it easier to convert from a fraction to a decimal.			- Pupils can read and write decimal numbers up to thousandths. - Pupils can multiply numbers with up to 3 decimal places by 10,100 and 1000. - Pupils can calculate with decimals and use these in context, making links to money and measure. - Pupils can convert fractions to tenths, hundredths and thousandths.		

Vocabulary	Knowledge What children will know	Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning ${ }^{\text {Teaching }}$ Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
etymology if useful.	Remembering Telling Testing	Practising	Coaching	Observing	Reflecting	Facilitating	Evaluating
	- Pupils know common fractions such as thirds, quarters, fifths and eigths as decimals. - Pupils know the line in the fraction is the same as divided by e.g. $3 / 4$ is the same as $3 \div 4$. Stem Sentences 1 is 10 times the size of one-tenth. One-tenth is 10 times the size of onehundredth. 1 is 100 times the size of onehundredth. 10 tenths is equal to 1 one. 10 hundredths is equal to 1 tenth. 100 hundredths is equal to 1 one. 18 hundredths is equal to 10 hundredths and 8 more hundredths. 10 hundredths is equal to 1 tenth. So 18 hundredths is equal to 1 tenth and 8 more hundredths, which is 0.18 . Three hundredths is zero-point-zerothree.				Pupils can use short division method to convert fractions to		

PAGE

								iculum	
Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
etymology if useful.	Remembering	Telling	Testing	Practising	Coaching	observing	Reflecting	Facilitating	Evaluating
common numerator - when two or more fractions have the same numerator denominator common denominator - when two or more fractions have the same denominator equal part equal grouping equal sharing parts of a whole half, two halves one of two equal parts quarter, two quarters, three quarters one of four equal parts one third, two thirds one of three equal parts sixths, sevenths, eighths, tenths, hundredths, thousandths...	We need to compare the denominators of $\frac{1}{5}$ and $\frac{4}{15} \cdot 15$ is a multiple of 5 . We can use 15 as the common denominator. We need to express both fractions in fifteenths. If one denominator is not a multiple of the other, we can multiply the two denominators to find a common denominator. We need to compare the denominators of $\frac{1}{3}$ and $\frac{3}{8}$. 8 is not a multiple of 3.24 is a multiple of both 3 and 8 . We can use 24 as the common denominator. We need to express both fractions in twenty-fourths. If the denominators are the same, then the larger the numerator, the larger the fraction. If the numerators are the same, then the larger the denominator, the smaller the fraction.								

Onton Wisfiow Primary school - Cunticulum Plan

Subject: Maftemafics

Year: 6
Unifi : Percenfoges

ricul									
Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
etymology if useful.	Remembering	Telling	Testing	Practising	Coaching	Observing	Reflecting	Facilitating	Evaluating
Proportion in every, for every per cent, \% - out of one hundred. Derived from the Latin per centum, meaning "hundred" or "by the hundred". percentage,	- Pupils know that per cent means "out of a hundred". - Pupils know the symbol \% - Pupils know that to find 10% of a number you must divide by 10. - Pupils know that converting a decimal to a fraaction is helpful when converting to percentages. - Pupils know to convert fractions, decimals and percentages to the same form so that they can be more easily ordered and compared. Stem Sentences 50% = $1 / 2$ so we divide into 2 equal parts. $25 \%=1 / 4$ so we divide into 4 equal parts. $20 \%=1 / 5$ so we divide into 5 equal parts. 10% is equivalent to $1 / 10$. To find 10% of an amount, divide by 10. 1% is equivalent to $1 / 100$. To find 1% of an amount, divide by 100.			- Pupils understand that percentage is a measure of proportion. - Pupils understand that 'per cent' relates to 'number of parts per hundred'. - Pupils understand the connection of percentages, fractions and decimals. - Pupils understand the difference between tenths and hundredths and their equivalent percentages, e.g. understanding that 0.1 is 10% not 1%. - Pupils understand there may be more than one way to solve a problem involving percentages and some ways are more efficient than others. - Pupils understand how to find the whole when they are given a percentage, e.g. If 10% of a number is 7 , what is the number?			- Pupils can draw bar models to represent a quantity as 100% - Pupils can determine multiples of 10% of a number or quantity using the bar model. - Pupils can find percentages of amounts, e.g. 35% by finding multiples of 10% and other known percentages. - Pupils can convert fractions to equivalent fractions where the denominator is 100 in order to find the percentage equivalent. $\frac{12}{50}=\frac{\square}{100}=\square \%$ - Children can convert between fractions, decimals and percentages to enable them to order and compare them. - Pupils can use a bar model to show an increase and decrease in amounts.		

On\}on Wistow Prinn@ry School - curriculun Plan

$\frac{0}{200}$

Subject: Maths

Year: 6

Unifi : Raxio

$\underset{\square}{=}$			
Vocabulary	Knowledge What children will know	Understanding What children will understand	Skills What children will be able to do
Define the word and include etymology if useful.	Learning Remembeing Teaching Assessment	Learning ${ }^{\text {Teaching }}$ Assessment	Learning Teaching Assessment
Ratio Proportion "for every... there are..." Part Whole Scale factor Enlargement Similar shapes Length Width perimeter	- Pupils know that ratio represents a multiplicative relationship between two amounts. - Pupils know the ratio symbol as a colon. - Pupils know that the wording, "For every, there are " can be written as: - Pupils know, and convey in their answers, which number refers to which value. - Pupils know that simplifying ratios is similar to simplifying fractions and that both involve dividing by common factors. - Pupils know that one shape is an enlargement of another if all the matching sides are in the same ratio. - Pupils know that similar shapes are shapes where corresponding sides are in the same proportion and the corresponding angles are equal, so if one shape is an enlargement of the other, the two shapes are similar.	- Pupils understand that the relationship between two numbers can be expressed additively or multiplicatively. For example, the relationship between 3 and 9 can be expressed as an addition $(3+6$ $=9)$ or a multiplication $(3 \times 3=9)$. - Pupils understand the inverse relationships related to each of these, for example 9-6 = 3 and 9 $\div 3=3$. - Pupils understand multiplicative relationships by using the language such as " 3 times the size" and "a third of the size". - Pupils understand how one value is related to another by making simple comparisons, such as: "For every 2 blue counters, there are 3 red counters." - Pupils understand that the order in which the notation is used is important. For example, for every 2 red cubes there are 3 blue cubes, so red to blue is $2: 3$. For every 3 blue cubes, there are 2 red cubes, so blue to red is $3: 2$.	- Pupils can complete sequences of numbers, deciding whether each relationship is additive or multiplicative. - Pupils can relate ratio to their understanding of simplifying fractions. - Pupils can explore ratio when given a fraction as a starting point. For example, they are told that 1 / 4 of a group of objects is blue, and they need to find the ratio of blue to not blue. - Pupils can explore different ways of calculating scaled lengths using multiplicative relationships between numbers. For example, if 3 cm represents 9 cm , then to find what 6 cm represents they can either multiply 9 cm by 2 or multiply 6 cm by 3 to find the result, 18 cm . - Pupils can use familiar language such as "3 times as big" before being introduced to the language of scale factors, for example "enlarged by a scale factor of 3 ".

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
etymology if useful.	Remembering	Telling	Testing	Practising	Coaching	Observing	Reflecting	Facilitating	Evaluating
	- Pupils know that when they multiply or divide from one amount to another, they do the same for the other value to keep the ratios equivalent.			- Pupils understand that the same ratio can be written in different forms, for example 4:6 can be written as 2:3. - Pupils understand the differences and similarities between ratios and fractions. Pupils understand that a ratio compares one item with another, whereas fractions compare each part with the whole. - Pupils understand if diagrams are accurately scaled or if the proportion of the dimensions has been changed. - Pupils understand the language of "Each square represents ..." to explain the relationship between the original image and its scale drawing.			- Pupils can draw the result of an enlargement by a given scale factor. - Pupils can identify the scale factor of an enlargement when presented with both images. - Pupils can use the inverse operations to find the dimensions of the original shape given the size of the enlargement. - Pupils can represent problems using bar models.		

Subject: Maths

Year: 6

Uniti : Siauistics

Orton Wisfiow Primary school - Cumiculum Plan

Subjech: Mathematics

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include etymology if useful.	Learning Remembering	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
		Telling	Testing	Practising	Coaching	Observing	Reflecting	Facilitating	Evaluating
Coordinates Axes X axis Y axis Origin $(0,0)$ Quadrant First quadrant Four quadrants Negative numbers clockwise, anticlockwise compass point north, south, east, west, N, S, E, W north-east, north-west, south-east, south-west, NE, NW, SE, SW horizontal, vertical, diagonal translate, translation movement whole turn, half turn, quarter turn, three-quarter turn rotate, rotation angle, is a greater/smaller angle than degree right angle acute angle obtuse angle Symmetry, symmetrical, line of symmetry reflection straight line	- Pupils know the point $(0,0)$ is know as the origin. - Pupils know which way to move along the axis to find negative coordinates. - Pupils know that the order of the coordinates is (x, y). - Pupils know that to find where a reflected point is located, you can use a mirror or count how far the point is away from the mirror line. - Pupils know that when translating shapes, you should focus on one vertex at a time. - Pupils know when translating shapes, you move along the X axis first (left/right) and then along the Y axis (up/down) - Pupils know the difference between reflection and translation.			- Pupils understand negative numbers in context of reading scales in four quadrants. - Pupils understand how to find the length of a line by using the coordinates of its two end points. - Pupils understand the coordinate is fixed (does not move) wheras a point can be plotted at different coordinates, so it can be moved. - Pupils understand that $(0,0)$ is where we start measuring the coordinates from.			- Pupils can place positive numbers on a number line. - Pupils can place negative numbers on a number line. - Pupils can determine the difference between positive and negative numbers using a number line. - Pupils can describe the positions of points on a coordinate grid. - Pupils can record the positions of points on a coordinate grid accurately. - Pupils can reflect a shape across a horizontal mirror line. - Pupils can reflect a shape across a vertical mirror line. - Pupils can identify the coordinates of figures on a grid. - Pupils can identify the vertex of a square and its opposite vertex. - Pupils can determine the difference between the coordinates of a vertex and its opposite vertex. - Pupils can express the change in coordinates between opposite vertices using algebra.		

Orfon Wistiow Primary School - Curriculum Plan

Subject: Mafthematics

Year: ©
Unifi : Properites of Shape

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include etymology if useful.	Learning Remembering	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
		Telling	Testing	Practising	Coaching	Observing	Reflecting	Facilitating	Evaluating
2-D shape Polygon (from Greek "many-angled) Quadrilateral (Latin quadrilaterus, from quadri- "four" and latus "the side, flank of humans or animals, lateral surface,") Regular, irregular Vertex, vertices sides point, pointed Triangles Isosceles (Greek isoskelēs, from isos 'equal' + skelos 'leg'.) Scalene (Greek skalēnos 'unequal'; related to skolios 'bent'.) Equilateral (Latin aequilateralis, from aequilaterus 'equal-sided') Quadrilaterals Square Rectangle Rhombus Parallelogram Trapezium 3-D shape	- Pupils know how to line up a protractor accurately. - Pupils know there are two rightangles on a straight line and four right-angles around a point. - Pupils know the notation for rightangles. - Pupils know that vertically opposite angles are equal. - Pupils know that the opposite angles in a rhombus are equal.			- Pupils understand whether to read the inside or outside scale of a protractor when measuring angles. - Pupils understand that vertically opposite angles share a vertex and are therefore equal. - Pupils understand how to find missing angles. - Pupils understand that the internal angles of a triangle can be arranged along a straight line and therefore add together to equal 180 degrees. - Pupils understand that the internal angles of a quadrilateral can be arranged around a point and therefore add together to make 360 degrees. - Pupils understand the realtionship between a rectangle, a			- Pupils can read and measure angles accurately using a protractor. - Pupils are able to calculate missing angles on a straight line or around a point. - Pupils are able to calculate missing angles in a triangle. - Pupils can draw shapes accurately using squared, dotted paper and using protractors. - Pupils can identify 3D shapes from their nets. - Pupils can use measuring tools and conventional markings to draw nets accurately.		

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning	Teaching	Assessment	$\begin{aligned} & \text { Learning } \\ & \hline \text { Practising } \end{aligned}$	Teaching	Assessment	$\underset{\text { Reflecting }}{\text { Learning }}$	Teaching	Assessment
etymology if useful.	Remembering	Telling	Testing					Facilitating	Evaluating
length centimetre metre millimetre kilometre mile foot, feet inch, inches weight mass tonne kilogram gram pound ounce capacity volume litre millilitre centilitre a.m., p.m. digital/analogue clock/watch, timer 12-hour clock time, 24 -hour clock time	- Pupils know which operation to use when converting a smaller unit of measurement to a larger one and vice versa. - Pupils know the difference between capacity (the amount an object can contain) and volume (the amount actually in an object). - Pupils know the unit of measure that would be the most appropriate to measure different items. - Pupils know that: 5 miles is approximately equal to 8 km. 1 foot is equal to 12 inches 1 pound is equal to 16 ounces 1 stone is equal to 14 pounds 1 gallon is equal to 8 pints 1 inch is approximately 2.5 cm - Pupils know the symbol ' \approx ' as "is approximately equal to". Stem Sentences There are 1000 grams in a kilogram so to convert grams to Kilograms we divide by 1000. There are 100 centimetres in a metres so when we convert centimetres to metres, we divide by 100 .			- Pupils understand the link between multiplying and dividing by 10, 100 and 1,000 when converting between units of length, mass and capacity. - Pupils understand the role of zero as a place holder when performing some calculations, as questions will involve varied numbers of decimal places. - Pupils understand how to work out what each mark is worth on a scale.			- Children read, write and recognise all metric measures for length, mass and capacity. - Pupils can convert between metres, centimetres and millimetres; litres and millilitres; kilograms and grams; seconds, minutes and hours etc - Pupils can use a ruler to measure 2-D shapes. - Pupils can use decimals to express units of measure when converting. - Pupils can compare measurements in different units and determine 'greater than', 'less than' and 'equal to'. - Pupils can find approximate conversions from miles to km and from km to miles. - Pupils can perform related conversions, both within imperial measures and between imperial and metric. - Pupils can determine how many seconds there are in a minute, how many minutes in an hour, how many hours in a day, and so on. - Pupils can find fractions of time and convert these into decimals using division.		

Orfon Wistow Primary School - Curriculum Plan

Subject: Maths

Year:6
Unifi : Arear, perimeter and volume

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
etymology if useful.	Remembering	Telling	Testing	Practising	Coaching	Observing	Reflecting	Facilitating	Evaluating
perimeter area volume cubic units (e.g. cm3) cuboid width length rectangle rectilinear parallelogram perpendicular height	- Pupils know the differences between area and perimeter. - Pupils know the formula $A=L X W$ to find areas of rectangles. - Pupils know methods for finding the perimeters and areas of rectangles and rectilinear shapes and compare their efficiency. - Pupils know whether they need to add or subtract to find the area of a rectilinear shape. - Pupils know the formula area $=1 / 2$ \times base \times perpendicular height. - Pupils know the properties of a parallelogram and compare to a rectangle. - Pupils know that the area of a parallelogram can be found by using the formula area $=$ base \times perpendicular height. - Pupils know they can find the volume by multiplying the volume of a single layer by the number of equal layers. - Pupils know the formula: volume of cuboid $=$ length \times width \times height.			- Pupils understand that shapes can look different but still have the same area. - Pupils understand when multiplication can be used to find the areas of shapes. - Pupils understand they can use factor pairs rather than relying on counting squares to calculate and draw rectangles that have the same area. - Pupils understand that when finding the area of a rectilinear shape, they look for the most efficient way to split the shape rather than always splitting it the same way. - Pupils understand how to calculate unknown side lengths. - Pupils understand when it may be efficient to find the area of a rectilinear shape by subtracting the missing part from the area of a whole rectangle. - Pupils understand the links between the area of a rectangle and the area of a triangle. - Pupils understand that a right-angled triangle with the same length and perpendicular height as a rectangle has an area that is half the area of the rectangle.			- Pupils can find the areas of shapes by counting squares and then identify shapes that have the same area. - Pupils can estimate the areas of triangles that involve sections of squares greater and less than half. - Pupils can create their own triangles with a specific area. - Pupils can identify the correct parts of the triangle. - Pupils can find the areas of triangles where only the base and perpendicular height are given. - Pupils can find the areas of triangles where more measurements are given. - Pupils can use multiplication to find the number of cubes in one "layer" of the shape and then multiply this by the number of layers to find the total volume. - Pupils can find the most efficient method to calculate the volume using the associative law of multiplication.		

Vocabulary	Knowledge What children will know			Understanding What children will understand			Skills What children will be able to do		
Define the word and include	Learning	Teaching	Assessment	Learning	Teaching	Assessment	Learning	Teaching	Assessment
etymology if useful.	Remembering	Telling	Testing	Practising	Coaching	Observing	Reflecting	Facilitating	Evaluating
				- Pupils understand that the perpendicular height is not always the length of one of the sides. - Pupils understand that the base is not always at the bottom of a triangle and sometimes there may be more than one possible calculation they could use to find the area. - Pupils understand how the parts of the parallelogram can be rearranged to make a rectangle in which the length and width correspond to the base and perpendicular height of the parallelogram. - Pupils understand the relationship between the total volume of a cuboid and its length, width and height.					

